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We define a fitness concept applicable to structured metapopulations consisting of infinitely many equally
coupled patches. In addition, we introduce a more easily calculated quantity R, that relates to fitness in
the same manner as R, relates to fitness in ordinary population dynamics: the R, of a mutant is only
defined when the resident population dynamics converges to a point equilibrium and R, is larger
(smaller) than 1 if and only if mutant fitness is positive (negative). R, corresponds to the average number
of newborn dispersers resulting from the (on average less than one) local colony founded by a newborn
disperser. Efficient algorithms for calculating its numerical value are provided. As an example of the
usefulness of these concepts we calculate the evolutionarily stable conditional dispersal strategy for indivi-
duals that can account for the local population density in their dispersal decisions. Below a threshold
density X, at which staying and leaving are equality profitable, everybody should stay and above x every-
body should leave, where profitability is measured as the mean number of dispersers produced through

lines of descent consisting of only non-dispersers.
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1. INTRODUCTION

During the past decade there has been an explosion of
interest in the dynamics of metapopulations. The book
edited by Hanski & Gilpin (1997) and the one by Hanski
(1999) each contain more than 1000 references. At the
same time the evolution of dispersal has caught the
interest of many scientists. As most species have a
hierarchical spatial structure with many local populations
connected by dispersal comprising a metapopulation, the
evolution of dispersal is most conveniently studied in the
technical framework of metapopulation dynamics
(Hastings 1983; Holt & McPeck 1996; Doebeli & Ruxton
1997; Janosit & Scheuring 1997; Parvinen 1999; Travis et al.
1999). An excellent discussion of the literature on life-
history calculations in metapopulations, including evolu-
tionarily stable (ES) dispersal strategies, can be found in
Oliviert & Gouyon (1998; see also Travis et al. 1999;
Ronce et al. 2000).

Most metapopulation models infinite
number of equally coupled patches. This poses some
problems when it comes to performing evolutionarily
stable strategy (ESS) or adaptive dynamics (Dieckmann
& Law 1996; Metz et al. 1996; Geritz et al. 1997, 1998)
calculations for these models. It is not immediately clear
how we should define fitness and what would be useful
stand-ins for fitness that are comparable to R, in the
single population case. In this paper we solve these
problems. In order to show the usefulness of the concepts
introduced, we calculate the ES conditional dispersal
strategy if individuals can sense the local population
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density, thus solving a problem posed by Olivieri &
Gouyon (1998; see also Ezoe & Iwasa 1997; Janosi &
Scheuring 1997; Travis et al. 1999).

Before embarking on our programme we provide a
little context. In reality we have a finite though possibly
large number of patches with different characteristics
which are coupled in a complicated manner. One of the
simplifying assumptions often made in metapopulation
theory, to which we shall also adhere, is that all patches
have equal characteristics, though not equal population
sizes and are equally coupled (all patches exchange indi-
viduals on an equal footing). The assumptions of equal
patches can easily be removed (Hanski & Gyllenberg
1993; Gyllenberg e/ al. 1997). We adhere to it in order to
avoid notational clutter. The assumption of equal
coupling is essential. However, for many purposes it
provides a fair approximation to reality. As an example
consider aphids with the patches corresponding to single
leaves on a tree. Our educated guess is that there will
rarely be any harm in applying our results in cases where
the root-mean-square dispersal distance is more than
three times the interpatch distance: for sufficiently wide
dispersal the correlation between local densities will be
low (compare the various contributions in Dieckmann et
al. (2000)) and the stream of arrivals is determined by an
average over the dispersal from a largish number of
patches, resulting in a rapid convergence to a local mean
field model. Moreover, results for mean field models
about invasion into point equilibria immediately extend
to homogeneous equilibria in local mean field models.

Given the homogeneity assumption just introduced, we
have two overall system parameters available, namely size
of the patches w and number of patches €. When both
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parameters are small the metapopulation becomes extinct
on an ecological time-scale due to demographic stochasti-
city. Therefore, it only makes sense to study long-term
evolution if at least one of these parameters is large. We
shall take the mathematician’s stance and equate large
with infinite so that we may rigorously neglect process
properties that at large sizes effectively disappear from
sight.

In case the patch sizes (w) are infinite and there are few
patches (€2 small) the classical fitness concept for struc-
tured populations, as expounded by Metz et al. (1992),
applies. If there are no further structuring variables we
have € local population densities as the state variables of
the metapopulation. The same applies to a rare invader.
Thus, the local linearization of the invader dynamics
near zero invader densities yields an €-dimensional linear
dynamics, possibly with time-varying coeflicients,
depending on whether the overall environment is constant
and the resident population dynamics converge to a point
attractor or some more complicated resident population
dynamics ensues. The dominant Lyapunov exponent of
this linear dynamics (biologically, the long-term time
averaged per-capita growth rate), in the case of constant
coefficients the dominant eigenvalue, provides the right
fitness concept for being inserted into evolutionary calcu-
lations (e.g. Parvinen 1999). In the case of a population
dynamical point equilibrium, we can use the general R,
concept for structured populations introduced by
Diekmann et al. (1990, 1998; see also Heesterbeek 1992) as
a stand-in for fitness: if and only if Ry >1 (< 1) will fitness
be positive (negative). Since the sign of its fitness deter-
mines whether a mutant can invade, knowledge of this
sign suffices for many evolutionary arguments including
the calculation of ESSs. Therefore, in those cases it is suffi-
cient to calculate R, which is usually easier, provided the
conditions that are necessary for its definition are satisfied.

The challenge comes when € is infinite. Then we are
outside the standard framework for establishing the exis-
tence of an exponential growth rate which, according to
the arguments in Metz ef al. (1992), is how we should
define fitness. Nor can we follow some standard approach
for calculating an Ry-like quantity.

In order to keep the mathematics simple we concen-
trate on the case without further structuring variables. In
addition, we assume that only newborns disperse and that
they do so by entering a dispersal pool which they leave
either by dying or by entering a patch. We phrase the
models such that the newborns are allowed to disperse
with a probability dependent on the local population
density and, on encountering a patch, choose to stay or to
leave again depending on the population density that
they encounter. (Compare with Ruxton & Rohani
(1999): not only is juvenile dispersal the natural strategy
for sessile organisms, it also prevails among mobile ones,
probably since there is a cost involved in settling that
juveniles have to pay regardless.) The reason for explicitly
taking account of such conditional decision rules is that
this directly leads to our closing example. However, the
arguments below are of a general nature and not tied to
those specific assumptions. A companion paper
(Gyllenberg & Metz 2001) dissects the abstract, mathe-
matical structure of the argument within the general
framework for structured population models put forward
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in Diekmann et al. (1994, 1998, 2001) and calculates the
ES conditional dispersal strategy for adult dispersal.

2. THE FINITE PATCH SIZE CASE

(a) Model specification

The state equations for a structured metapopulation
are similar to the differential equations for the state prob-
abilities of a continuous-time Markov process. There are
good reasons for this similarity. Every single patch under-
goes a Markov process. Only the collective of all infinitely
many patches together behaves as a deterministic entity.
In the case of finite w the Markovian state of a single
patch (p state) corresponds to the number of individuals
present in it. To make life easy we assume that there is a
maximum 4 to the number of individuals in a patch. The
state of the metapopulation (m-state) is given by the frac-
tions p; of patches with various numbers (z) of individuals
in them together with the disperser density D. Figure 1
shows the possible p-state transitions for the model we
have in mind. « is the rate constant of patch encounter
for the dispersers, p,; are per-capita death rates, s5; are
probabilities that a newly arrived immigrant decides to
stay, A; are per-capita birth rates, d; are probabilities that
a newly born individual decides to disperse and «; are
rates of externally imposed catastrophes wiping out the
local population. The strategy parameters d; and s; are
assumed to be heritable. The other parameters (o, v;, 1;,
and 4;) are supposed to be either constants or fluctuate in
an ergodic manner. (In practice this means that o, v;, g,
and 4; should not show any systematic trends on any
relevant time-scale. The reason for invoking the term
‘ergodic’ is to guarantee the truth of some of our
mathematical statements below,) The m-state equations
corresponding to the scheme in figure 1 are as follows.

J k
% = —aDsypy+ i pr + Z’)’;‘ﬁj, (la)
J=1

dp, .
d_[j,‘ =[aDs;i 4+ (i = 1A (1 —diy)]piy

— [ + aDs; +idi(1 — &) + vl pi + (0 + ) i1 pigas

(16)
4D k-1 kL
FTER. ZP[&'D + Z iid; pi — pp D, (L)
=0 p

where pp 1s the per-capita death rate of the dispersers,
which is also assumed to be either constant or ergodic. We
used the conventions that p_; =0, p,; =0, 5, =0 and
dy =1 (the first convention only becomes relevant at a
later stage) in equation (1). The first two conventions
bring the form of the equations for the p; with ¢ next to
the boundary of the feasible domain in line with those for
the p; with ¢ in the interior of that domain. The assump-
tions about 5, and d; are required to keep the population
size from becoming larger than £. (Otherwise, if £ is the
absolute maximum to the local population size, anybody
born or arriving into a population of size £ had better
leave lest they die.)

No general results about the equilibria of equation (1)
are known. We know of no cases yet where it has been
found that, for constant parameters, equation (1) have no
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Figure 1. State transition diagram for a single patch.

*  mutant
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d, death event
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Figure 2. Schematic representation of the p-state transitions
in a combined resident plus mutant patch. Thin arrows
indicate transitions that are relatively rare.

globally stable point equilibrium. However, we surmise
that it is possible to obtain bistability by incorporating a
sufficiently strong Allee-type effect. Appendix A provides
an algorithm for calculating the equilibrium values of the
relative frequencies of the local population sizes p: and of
the disperser density D.

(b) The linearized mutant equations

Now consider what happens when a mutant having
strategy parameters d° and s° is introduced. Then we
have to consider an extended set of state variables for the
metapopulation, for which we choose the relative frequen-
cies of the patches filled with different resident and
mutant numbers ¢, ;, ¢ 20, =0 and i+;<k, where ¢
refers to the number of resident-type individuals and j
refers to the mutant number. In addition, we have
equations for the resident and mutant disperser pools.
The former we shall again denote as D and the latter as
D*. A schematic representation of the p-state transitions
is indicated in figure 2.

We are primarily interested in the mutant population.
This population is represented by those ¢;; for which
J # 0. Initially these ¢;; may be supposed to be very small
relative to the ¢;. When the mutant population is still
rare it has little influence on the resident dynamics.
Therefore, ¢;9, ¢ =0, . . ., £ can be approximated using
p; calculated from equation (1) after the resident
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dynamics have relaxed to an attractor. When the environ-
ment is constant we substitute ¢; ) = p:and D = D.

Initially, D* will also be small. This allows us to neglect
any further mutants arriving in the rare patches that
already have mutants in them. We start with introducing
some conventions in order to simplify the notation. We
shall notionally set ¢_; ;=0 and ¢;; =0 when i+
=k+1 and s;; = st =0 and d;; = d:j =1 whenever
¢ +j = k. The rationale is the same as that for the similar
conventions for p,. Moreover, we shall add asterisks to all
parameters pertaining to mutant individuals. For the
concrete example under consideration, where mutants
and residents differ only with respect to the probabilities
that newborns disperse from a patch &; and the probabil-
ities that dispersers stay in a patch s; write

* ;* " ) * *
QO =Q, A=A gy i = i = Biggs Vi = Yitgs
* * * *
dij=dis Sij=Siyp dij=diyj, Sij = iy
The differential equations for ¢;; have a term corre-
sponding to the arrival of mutants into patches with resi-
dents only. In the equations for ¢, j>1, this term is

lacking.

d 7 * * ok .
% =a Ds; p;+[aDsg+ (0 = 1) 41 —dig)] gim1,
- [iﬂi,l +Mi1 +aDs;, +Mz‘,1 (1 _di,l> +/1;:1 (1_dz1>
+ ’Y:]] g+ (@ + 1),LLi+l,I Gig1,1 + 2#;2 qi2> (2a)
dqi,j _ . " .
T [aDs;,_y ;+ (0= 1) A (1 —disy 1 )1gim j+ (5= 1)

X ;»Zj;l (1- d:jfl>qi,jfl — [ip; +]M?,; + aDs; ;
+idj(1 —d;;) +J.)ij<1 - d:ﬂ +7:j]qz',j +(@+1)
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=0 =0 j=
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Equation (2) forms a sufficient starting point for the
discussion of invasion fitness in structured meta-
populations, even in the most general case where all the
individual parameters are functions of some strategy
parameter S, for example A=A, (5,5), /IZJ
= /lj-yz»(S*,S) and 4; = 4; 9, with 4,;(5,S5) not dependent
on 7 and j separately but only on i+ and 4, (S,5") not
dependent on S*.

(c) Invasion fitness

Prior to the definition of fitness we rewrite equation (2)
in a more accessible form. We thus define the (column)
vector V as

V= [(‘h,j)z‘:o, o k=lg=1 L k=i D*]T7

where the pairs (¢, ), are supposed to be lexicographically

ordered, i.e. put in the order (0, 1), (0, 2), ..., (0, k),
(L), (1,2), .., (Lk=1),..., (k—=1,1). The map
transforming a pair (1,7), 1=0,...,k—1,
J=1,...,k—1 into its position n in the lexicografic
order we shall call L. Using this notation we write

dv

T BV, (3)
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where the matrix B contains the various coeflicients from
equation (2) ordered appropriately. If the coefficients in
equation (2) fluctuate ergodically, there exists a dominant
Lyapunov exponent p associated with equation (3). In
biological terms, the total mutant population size overall
will grow or decline exponentially at a per-capita rate p.
Generalizing from the case of ordinary population
dynamics we shall call p the fitness of the strategy
$*=(d", s") in the environment set by an S = (d, s) resident.

Generally, we can only calculate p by (1) numerically
solving equation (1) until some time ¢, that should be sufhi-
cient to allow the resident population to relax to its attractor,
(i1) numerically solving equation (3) or, equivalently,
equation (2) in parallel with equation (1) starting from some
positive initial condition at ¢, and (iii) estimating p from
the average linear increase rate of In(D") with time.

When the resident dynamics converge to a point equili-
brium we can calculate p as the dominant eigenvalue of
the corresponding constant matrix B. However, this is
hard work and, in this case, there is an easier solution to
the invasion problem as discussed in § 2(d).

(d) A stand-in for fitness in the case of population
dynamical point equilibria

In order to remove clutter, we shall adhere to the
convention that ‘individual’ and ‘disperser’ refer to mutant
individuals, dispersing mutants, etc.

In the model as formulated, individuals may live in
very many different environments. They are either disper-
sing or they are in an (z,j) patch and, therefore, have ¢
residents and j — 1 mutants impinging on them. This
makes calculating the usual R, i.e. the mean lifetime
number of children of a randomly chosen individual, a
difficult task. The way out is to proceed not on an indivi-
dual but on a colony basis, i.e. to work not from birth to
births, but from dispersal event to dispersal events, on the
rationale that in the usual structured metapopulation
model all dispersers are equivalent.

We shall call the average number of dispersers
produced by the (0 or 1) colonies founded by a newly
born disperser R, m being from metapopulation. We
calculate R, in a number of steps. First, we observe that a
newborn disperser has probability

* kN
s b
T = 7,0 pz , (4)
* *

-~ *
Q2 Siop+ by

J

T

Il
=}

of ending up in an (7, 0) patch, turning it into an (z, 1)
patch. The newly founded colony then undergoes a
Markovian stochastic population process until extinction.
The states of this continuous-time Markov chain are the
pairs (z,7), 7>0 and =0, (z4j)<k. We shall number
these states according to the same scheme as used in
§2(c). The corresponding probability vector X (a), where
a is the age of the colony and x,(a) is the probability of
finding the colony in state n = L(z,7) at age a (with L the
renumbering scheme defined in § 2(c)), satisfies

dX -
-=BX, (5a)
X(0)=7Y, (56)
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with y, =@, forn=L(:, 1),:=0,..., k=1 andy, =0
for all other » and with B constructed from B by
removing the last row and column. (z,7) patches produce
dispersers at a rate j/lzjd:j. We collect those rates in a row
vector A in the usual manner, i.e. we set jxlzjdzj =a;
fori=0,...,k—1 5=1,... k—1i Then the general
theory of continuous-time Markov chains tells us that

R, = —AB'Y (6)
or, equivalently,

R, =AZ, (7)
with Z the solution of

BZ =Y. (8)

Appendix B describes a robust numerical method for
calculating R, based on equations (7) and (8) for
smallish (for example, £<50) patch sizes. We derive an
approximation for R, applicable for larger patch sizes in
§3.

R, is a function of two variables, the resident strategy
S and the mutant strategy S*, which we can express by
writing R,,(S,8"). Consistency requires that R,,(S,S) = 1.
This property was born out by numerical work on
various special models, but we have not been able to
prove it in general.

3. THE INFINITE PATCH SIZE CASE

(a) Taking the limit for patch size going to infinity

There exists a large body of theory for structured
metapopulations in which the local population density x
is treated as a continous variable (e.g. Gyllenberg et al.
1997). Biologically these models can be seen as useful
limits for large patch sizes of models with discrete local
population sizes. We proceed in this spirit. We shall argue
heuristically in what manner our results simplify when
we let the size of the patches (w) move towards infinity.
Moreover, we immediately concentrate on situations
where the populations reside in a point equilibrium, as
these are the only cases where we can arrive at analytical
results. For fluctuating environments we have to go
numeric, which comes close to using the model with a
discrete structuring variable from which we started. (This
statement 1s a bit facetious as there exist efficient numer-
ical techniques for handling deterministic structured
population models with continuous structuring variables
in a more direct manner (De Roos & Metz 1991; De
Roos et al. 1992)))

First, we consider the dynamics of the local resident
densities x = i/w, ¢ the number of residents and the corre-
spondingly scaled disperser pool M = Djw without
mutants. In order to arrive at a continuum limit we have
to make the biologically reasonable assumption that our
individuals, be they mutants or residents, only react to
local densities:

Ay =Aliw), = plijw), 7 =7(ijw),
d; = d(ijw), s; = s(ijw). (9)

After w has gone to infinity and in between catastrophes,
the resident dynamics satisfy
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& =g(x, M)2[2(x) (1= d(x)) = p(x)]x + as(x) M,

It (10)

where 7 1s the time since the last catastrophe and

dM *® Oo
T ; Alx)d (x)xp(x)dx —oz/0 s(x)p(x)dx M — pupM,
(1)

where p is the current probability density of the local
population densities. This probability density can be calcu-
lated from a partial differential equation, as discussed by
Metz & Diekmann (1986) and Gyllenberg & Hanski
(1992) or using the integral equation approach discussed
in Gyllenberg et al. (1997; also cf. Diekmann et al. 1998,
2001) using g from equation (10) as an ingredient.

Mutants start their career as single individuals. There-
fore, if we consider how a mutant population takes off we
have to deal with infinitesimally small values of M". In
contrast to the resident case, there is no continuous
stream of mutant dispersers into the patches, at least
during the initial phase of the invasion process. We have
to consider single arrival events. The resulting infinitesi-
mally small local mutant population densities never grow
to an appreciable size since local populations only have a
finite time prior to being wiped out by a catastrophe.
Therefore, even for infinite w, we have to treat the local
mutant population dynamics as a stochastic process. (The
reason we did not have this discrepancy between mutant
and resident dynamics in the case of finite w is that the
small patch size makes the local residents behave stochas-
tically as well. In the case of finite w it is only D" which is
very small relative to D. This means that the relative
density of patches that have mutants in them is very
small. However, when we concentrate on what happens in
those patches, mutant and resident population sizes are of
the same order of magnitude.)

The small size of the local mutant populations also has a
helpful side. The presence of mutants leaves the local
resident population unaffected. In the same vein, the popu-
lation dynamical characteristics of the mutant individuals
are unaffected by the local mutant density. Only the local
value of x matters. Therefore, the local mutant numbers
develop according to a stochastic linear birth and death
process with x-dependent, time-varying parameters.

(b) Calculating R,,

R, can be calculated along similar lines as in the finite

patch size case. Our closing example has been chosen so
that it is possible to skip most of the calculations.
However, we shall outline the full procedure as it is both
conceptually relevant and a necessary ingredient in other
applications.
__First, we have to calculate the equilibrium values » and
M for the probability density of the local resident popula-
tion densities p and the disperser density M. Appendix C
gives a recipe. We calculate the probability density m for
the patches in which a settling mutant disperser will find
itself from

5

_ a?(x s (x) .
o [ D(E)s (€)dE+ 1},

(x) (12)
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The resident density y,(a) surrounding a mutant colony
for which the resident density at the moment of founding
was x can be calculated from

dy, =
1 =g M),
a

(13a)

9,(0) = «. (13b)

As a consequence of the independence of the individuals
in the mutant colony the average size m, of that colony
satisfies the differential equation

dm ¥ * %
= [ O)(1 =4 00) =10 =0 (14a)
m(0) =1, (14b)

where we now include the possibility that the colony has
been eradicated by a catastrophe. The expected reproduc-
tive output at age « from such a colony equals
2" (p.(a))d* (y.(a))m,(a). Therefore, the expected number
of dispersers produced by a colony founded by a mutant
disperser entering at resident density x equals

R(x) =/0 2 (9.(@)d" (5,(a))m,(a)da, (15)

and

R, = / N R(x)m(x)dx.

0

(16)

Appendix D describes a simple procedure for calcu-
lating R, using existing packages for solving differential
equations.

4. EXAMPLE: CALCULATING EVOLUTIONARILY
STABLE DISPERSAL STRATEGIES

We have already included two explicit strategy vectors
in our basic model formulation, (d;),_, ,_,, the prob-
abilities that a newborn disperses when born in a patch
with population size z and (s;);_, =, the probabilities
that a disperser stays on encountering a patch with popu-
lation size j. Here we shall only consider the simpler
infinite patch size case. In that case the strategy consists
of two functions 4 and s of the continuous variable x. In
order to simplify calculating the ESS, which is denoted as
(d,5), we introduce some biologically reasonable asump-
tions on the other model ingredients. We assume that
both the birth rate 4 and 1 — p — v are non-increasing
continuous functions of x, 4(0)>u(0) +~(0) and there
exists a unique positive x such that

A(x) = p(x) +7(x).

We obtain the ESS by maximizing R,.[(d,s), (4", s")] in
(d*,s") and then setting mutant equal to resident (so that
R,=1).

Due to the lack of memory of the disperser state a just-
arriving immigrant in a patch with resident density x has
a future indistinguishable from a newly born individual at
the same value of x. Therefore, d(x) =1—7(x) for all x
where (d(x),5(x)) is the unique maximizer of R, in the
(d*(x),s"(x)) direction. Tt will turn out that, at such «x,

(17)
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either g(x) =1-5x) =1 or g(x) =1—=7(x) = 0. Where
uniqueness fails there is a one-dimensional continuum of
maximizing values; below we shall see that this only
happens at a single special value of x.

Since mutant individuals reproduce and die indepen-
dently, for a newborn stayer the expected number of
dispersing descendants produced by itself and the clan of
all its within-patch descendants also equals R(x). At
population dynamical equilibrium a disperser on average
produces, through starting a colony, R, =1
disperser. A mutant who, at some x, behaves in a manner
which lets it and its clan produce, on average, more
future dispersers than the resident and everywhere else do
not do worse will invade. Thus, a strategy that has stayers
at local densities where staying results in a net loss
(R(x) <1) can always be invaded and, therefore, cannot
be an ESS. An analogous argument applies to a strategy
that has leavers at local densities where staying would
result in a net gain (R(x)>1). (This is the usual marginal
value type of argument, but is based on a fitness measure
geared to a metapopulation situation as well as taking
account of density dependence.)

R(x) can be calculated from equations (14) and (15). In
Appendix E we prove that, independent of the details of
the dispersal strategy, R(x) <1 in any patches with x>7x.
Therefore, in the ESS every newborn should disperse
whenever x>% We also prove in Appendix E that, if we
consider only strategies for which every newborn
disperses whenever x>%, then R(x)>1 in patches with
x<x. Therefore, in the ESS newborns should stay as long
as ¥ <X.

As a consequence, at the ESS 0<(x) <oo for 0<x<¥
and »(x) =0 for ¥<x. Moreover, ¥ is reachable from 0 in
finite time. Therefore, » contains a delta function compo-
nent at x representing a concentrated probability mass.

Consistency requires that the local population growth
rate of the resident precisely at ¥ is

new

¢(%, M) = (D) (1 - d(%) — p(R]T+ 5D I =0, (18)

for, if g(x, /\/\4) were larger than 0 at the ESS, the local
population density would grow beyond x, which is
incompatible with the fact that, beyond ¥, all newborns
leave, with an analogous argument applying on the other
side of ¥.

A biologically more realistic phrasing of the previous
arguments runs as follows. Below % individuals should
stay and above ¥ they should leave. At ¥ it is unclear what
they should do. In practice, they will perceive the
surrounding population density with some small error.
Thus, some will leave a little too early or a little too late.
If by chance many were to err on the late side the local
population density would increase further beyond x
forcing them to leave anyway. This natural feedback loop
would (i) produce a very steep hump in  around %, with
» =0 somewhat further beyond %, and (ii) produce a
pattern of leaving over the small x interval under the
hump, which when looked at through foggy glasses would
be indistinguishable from equation (18). N

At the ESS R(%) =1 independent of the value of d(%).
Apart from equation (18) there is no further constraint on
d(x) and 5(%).
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The final conclusion is that, overall, the ESS has the
pattern of a bang-bang control: s(x) =1 and d(x) = 0 for
all x<x and 5(x) =0 and d(x) =1 for all x>x. At x =%
the decisions are no longer deterministic. At this value of
x the ESS is also non-unique: there is a one-dimensional
continuum of ESSs consisting of all pairs (3(x), d(x)),
0<5(%), d(x) <1, satisfying equation (18). At the ESS the
population density in a sizeable fraction of patches is the
same, namely ¥; the densities in the remaining patches
vary between 0 and x.

The prediction about the equilibrium distribution of
the population densities suggests an easy field test. Unfor-
tunately, this prediction hinges on the simplifying
assumption of equal patch qualities. If patch qualities
differ, the ES dispersal strategy stays of the bang-bang
kind, but the local value of ¥ is dependent on the patch
quality, resulting in an ideal free arrangement for the
‘filled’ patches. Within a set of patches of the same quality,
again a sizeable fraction of patches should be filled,
supporting the population density x that corresponds to
the local quality, while the densities in the remaining
patches in the set should vary between 0 and that x. If no
independent estimate of patch quality is available, the
theory can be tested by looking at whether, after local
catastrophes, the local dispersal rate drops back to zero,
eventually to bounce back, each time at approximately
the same value of ¥ and to approximately its former non-
zero value, which is such that, from then on, it keeps the
local population density approximately constant, that is
until the occurrence of the next catastrophe.

5. DISCUSSION

We gave a fitness definition for metapopulations
consisting of a large number of equally coupled patches.
The trick in deriving an appropriate fitness concept in a
metapopulation context is to replace individuals by local
colonies together with their local environment as the unit
of calculation. This trick is only technical; we are dealing
with a strictly individual-based fitness concept all along.
The colony viewpoint is only introduced in order to keep
track of the varying environments in which individuals
find themselves. (This way we also account for kin selec-
tion effects) In addition, we devised a quantity that
stands in the same mathematical relation to meta-
population fitness as R, stands to ordinary fitness: R, 1is
only defined for population dynamical point equilibria
and then the sign of In(R,,,) equals the sign of the metapo-
pulation fitness. Basically, R, describes the fate of local
colonies by following their life cycle from a newborn
disperser to the dispersers produced by the colony that it
may found. Algorithms for calculating R, for smallish
patch sizes are described in Appendices A and B. In addi-
tion, we give an approximation of R, for largish patch
sizes in terms of some formidable looking integrals.
Appendices C and D describe how the integrals can be
calculated using readily available packages for the solu-
tion of differential equations.

In §4 we showed how the newly developed concepts
can be used to solve a problem posed by Olivieri &
Gouyon (1998): What is the conditional dispersal strategy
when individuals react to the local population density?
This strategy can be calculated through an adapted
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marginal value argument, phrased in terms of the newly
developed fitness measure and taking account of the
inherent density dependence, which necessarily makes the
R, of any resident type equal to one. The result is akin to
an ideal free distribution: the ES dispersal behaviour
makes the patches reside at densities where the expected
contribution of the individuals to future generations are
exactly equal as much as possible, independent of
whether their offspring stay at home or disperse. Only
patches that have recently been subject to a catastrophic
extinction have lower population densities so that the
individuals in them have higher expected contributions to
future generations. However, in order to reach such
patches dispersers have to pay the penalty of potentially
dying during the process, which equalizes the expected
fitness gain precisely.

At least three earlier papers have dealt with density-
dependent dispersal. All three considered discrete-time
models, with dispersal in a single pulse after repro-
duction. Ezoe & Iwasa (1997) assumed that £ =1, as
opposed to £ = 00 in our model. Dispersal reduces the
number of remaining offspring in a deterministic manner,
which is only possible if there is a dependence between
the dispersal decisions of the offspring, for example, since
the decision is taken by the mother or when the number
of offspring is very large. Reproduction fluctuates
randomly in space and time. The ES dispersal fraction is
zero when the number of offspring is below a threshold
and otherwise sets this number back to the threshold
density. Janosi & Scheuring (1997) used a deterministic
coupled map lattice for their population model. The
density fluctuations necessary for the profitability of
dispersal come from a non-point attractor. They restricted
their attention to strategies where individuals do not
disperse below a threshold density and otherwise disperse
in a complicated, dependent manner which reduces the
population density to somewhat below the threshold
density. Their fig. 5 shows a unique evolutionarily
attracting ES threshold, which, however, was not robust:
in principle there exist slight changes in model specifica-
tion that transform the ESS into a branching point (Metz
et al. 1996; Geritz et al. 1998). The model of Travis e al.
(1999) is closest to ours in spirit except that it does not
incorporate any environmental stochasticity and that the
strategies are restricted to functions that are zero below a
threshold density and increase linearly thereafter. The
restriction to a small subset of possible dispersal rules
makes the numerical results of Janosi & Scheuring (1997)
and of Travis et al. (1999) incommensurable with ours.
The analytical result of Ezoe & Iwasa (1997) conforms
with our result that, whenever possible, the ES dispersal
rule fixes the local population density at a single
threshold value.

The particular example we used has the advantage
that the ESS is monomorphic. The arguments used for its
calculation also show that it has a fair domain of evolu-
tionary attraction. The techniques of adaptive dynamics
(e.g. Geritz et al. 1998) together with the procedures for
calculating R, also make it possible to determine whether
a sequence of quasi-monomorphic substitutions eventually
leads to evolutionary branching. After such a branching
event mutant fitness can still be defined in a similar
manner and so can R, but the state space of the local

m>
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mutant clans has to be expressed in terms of two resident
population sizes 7; and 7, in addition to the mutant popu-
lation size j (or more population sizes if higher degrees of
polymorphism occur). In the finite patch size case this
does away with our trick in Appendix A for calculating
the population dynamical equilibrium. Moreover, the
numerics in Appendix B for calculating R,, quickly gets
out of hand. We eagerly await further practical tricks for
tackling such cases. At least we now have an under-
standing of the necessary fundamentals.
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APPENDIX A. HOW TO CALCULATE THE 3,-

In order to calculate p; we start by solving F(E) =0,
e.g. using a bisection method, where F' is defined by the
following algorithm (if /(D) <0 for all D>0 the meta-
population is not viable).

(1) Supply a value of D.
(ii) The next step is to calculate two sequences of
numbers to be called p,; and py,;, :=0, ...,k

The calculation is started by setting p, =0 and
pr1="1land pyy = 1and p,; =0.

(111) Successively calculate the following [~717i, 1=2,.. .,k
using
ZI,H»I = {[ip; + aDs; +i2,(1 — d;) + 'Yi]Zl,i —[aDs;,
+ (= DA (1- d[*l)]z;l,i—l}/{(i + D)ivi}.
(iv) Calculate the [~721 in exactly the same manner as the
JARE
(v) Calculate P, = Zf:ojzl,i and P, = 25:0}52,1;.
(vi) Calculate Q, = S0 % p1, and Q. = >0 Y, o
(vii) Calculate W = (pu; + Q )Py + (aDsy — Q 5) Py.
) Calculate u; =(aDsy—Q o) /W and uy= (1, +Q )/ W.
(ix) Calculate the numbers p; = u, Zl,i + uy Zg’i.

(x) Calculate F(D) as

(viii

k

F(D) =il p; — aiﬁ-s,l) — upD.

=1 =0

Trom the equilibrium D of D, we can calculate the
equilibrium values : of the p; by the same rules as before
with D substituted for D.



506 J. A.J. Metz and M. Gyllenberg  Fitness in metapopulations

APPENDIX B. HOW TO CALCULATE R,, WHEN w
IS FINITE

The renumbering scheme L used in §2(c,d) had
bringing out the classical vector—matrix structure of the
procedures as its only purpose. In order to calculate Z
from equation (8) it is easier to return to the original
numbering scheme in terms of ¢ and j (the numbers of
residents and mutants in the patch, respectively). We do
this by setting u, ; = z7; ;- The u;; can be interpreted as
the mean time the local mutant colony stays in state (i,7)
before extinction. The components of the matrix B we
denote as

Cia,j =+ 1)#:;'“,

Ci,] = 041351‘—1,]' + (0= Dy (1 —disy ),

¢ == lipej +pi, + 041351‘,_;‘ +ii (1 —d;)
+].)“Zj(1 - diﬁ/) + 7:]'],

C?,j = (i4 D1

do= (-1

ij i,j—1

*

(1 —=dij1)

for > 1. (The indices a, 1, ¢, r, and b stand for above, left,
centre, right and below, respectively. Now let

_ C
ij = TGl

so that

k=1 k=i /1

* gk
JAi, jdz: j
Rm = E E s yi,j'
—¢.
=0 j=1 2v)

The v;; can be interpreted as the number of times the

colony passes through state (z,7). They can be calculated
as the limit v; ;(00) from the recurrence

a 1

Gij Cij
v j(n+1) = ——0; 41 (n) + ——0,1 j(n)
G+l
r b
iJ iJ
+ v (n) 0. (n)
—Ciy1, —Cij-1

(BI)

for1=0,7=>1 and ¢4 <k, together with the convention

b
Ci1 = 17

c _
Cit10 = -1,

and the boundary conditions v_,; =0, v, =m; and
v;; =0 for i+ j =k + 1, starting from any possible initial
condition. If one has no better initial guess one can take
2;;(0) = 0. However, usually the calculation will be part
of an ESS calculation or of a scheme where the parameter
dependence of that ESS is analysed. In that case one
generally already has a fair initial guess for the v, ; from
some earlier stage of the calculation which can be
improved using equation (Bl).

APPENDIX C. HOW TO CALCULATE p(x)

(a) The general procedure
__ Inorder to calculate p(x) we first calculate the function
p of the two variables x and M as
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ety ~
exp{—/0 (& M) df] for 0<x <x(M)
-0 for (M) <x,

df] dx) . ,

with

(&)

€= </ wg<x,1M> ‘”‘p[_/oxg@, M)

where %(M) is the positive solution of

g(x, M) =0,

provided such a solution exists (in which case it 1is
unique), otherwise x(M)= oo. N

The next step is to calculate M by (numerically)
solving the equation

/ h A(x)d(x)xp(x, M)dx — o / N s(x)p(x, M)dx M
0 0
— upMEG(M) =0.

(If G(M)<0 for all M >0 the metapopulation is not
viable)) Finally, we calculate p as

P(x) = plx, M).

In practice it will usually be necessary to evaluate the
various integrals numerically.

(b) An efficient recipe for calculating the integrals

For a given fixed M there exists a monotone relation-
ship (to be called X) between the age of the local resident
population 7, which is defined as the time since a patch
underwent its last catastrophe and the present resident
population density x. The existence of such a relationship
makes it possible to calculate the integrals using a
standard package for solving differential equations. The
equations to be solved are (with the two arguments 7 and
M suppressed; the X, 7V, £, V and W below bear no
relation to the same symbols from the main text)

O = m X(0) =0,
T =, ro) =1,
CC‘l_f s 2(0) =0,
%:i(X)d(X)XY, V(o) =0,
‘Z_I:/ =5(X)7, W(0)=0

X describes the development of the local population size
and 1 the survival of the colony. The other three quanti-
ties are only calculated in order to find their values for
large 7, which are needed as a normalization factor and
in the equation for M. Given the solution of these differ-
ential equations G can be calculated as

G(M) =V (00)/Z(00) = [aW (00)/Z(00) + pp]M.

It takes a long integration to arrive at T = 00. However,
in practice one can replace the tail of the integration by
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an analytical approximation: as time proceeds X(7)
converges to x(M) which is defined as the solution of
g(x, M)=0. When X(t) has come sufficiently close to
x(M), say at T = T, one can stop integrating and write

V(o) = V(T) + A(X)d(X) XY (T)[v(X),
W(oo) = W(T) +s(X)Y(T)/v(X)

R(00) =X(T) + ¥(T)]7(X),

where X is either X(7) or X(M). The discrepancy
between the two cases can be used to judge whether one
has chosen 7 sufficiently large.

The equilibrium colony age distribution g corresponds to

3(1) = T(1)/Z(00),

where a ‘hat’ means that the quantity has been evaluated
at M = M. The stationary colony size distribution is
calculated by transforming from population age to size:

PR =—LD
¢(X (@), M)

APPENDIX D. HOW TO CALCULATE R,, WHEN w
IS INFINITE

In order to calculate R, in practice, it is again easier to
revert to a representation in terms of local population
ages. We start calculating a quantity U from

dU .
— =1 (X)U U0)=1

=/ 0U, ) =1,
with

LX) =@ =4 (X)) = @ (X) = (X)),

and X’(r) the quantities already calculated in Appendix
C § (b). Given U we can calculate m from equation (145)
as m}@\(a) =U(t+ a)/U(‘c)).A R

Let ¥ be the solution of g(x, M) = 0. If /" (x) >0 then
R, = 0o and the mutant can invade. Under some reason-
able monotonicity and smoothness assumptions the same
holds good when /*(%) = 0. So we can concentrate on the
case where £ (%) <0.

In order to calculate R(x) we introduce a quantity Q to
be calculated from
d * TS * S
9 _ @ 0(0) = 0.
dt
This allows us to calculate R(j\((r)) =[0Q (c0)—0Q (1)])U (7).
In practice, for large t we can again replace Q with the
analytical approximation

%

Q(00) & Q(T) = 2 (X)d" (X)U(T)|f" (X)

Q(1)~Q (00)=[Q (00) = Q(T)]explf (X)(t=T)],
where 7 and X are defined as in Appendix C § (b), but
now with M substituted for M.

It remains to integrate R(X(t)) with the patch age
distribution calculated in Appendix C. To this end, we
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introduce three helper quantities 4, B and C to be calcu-
lated from

dd (X7

— = A(0) =0
dt u ’ (0) ’
dB  Qs"(X)T

dt u (0) ’
dc o~

— =X C0)=0
& = (07, (0) =0,

with 17(1) the quantities calculated in Appendix C § (b).
In principle this allows us to calculate R, as

lim.,o[Q (00)4(7) = B(r)]
" C(00) + g (00)

R, =«

with Z(oo) the quantity calculated in Appendix G § (b).
The reason for not writing the numerator as
0 (00)A(0c0)—B(00) is that both A(co) and B(oco) are
infinite. The numerical trouble that this generates is
avoided by using the approximation

lim[Q (00)4 (1) — B(1)] & Q(c0) A(T) — B(T)

Q(00) = QT)s"(X)T(T).

U 2 (X)

APPENDIX E. SOME HELPFUL INEQUALITIES

We start from a more explicit expression for R(x) calcu-
lated from equations (14) and (15):

RmféuxwwxmmeﬁAumwmrfwm»

—M(%(T))-V(%(T))]df} da, (EL)

where y, should still be calculated from equation (13).

The general theory of structured population models
tells us that, for our model, p(x)>0 if and only if
g(x, M) =0. There is no way in which a local population
can ever reach values of x for which g<0. Therefore, we
can safely assume that in equation (EI) y, > . Therefore,
R(x) < H(x,x) always with H defined by

H(z,@é/o i<z)d*<yx<a>>exp[/0[Mz)(l—d*(yx(f))
—hu(z) —7@]&} da.

Together with our assumptions about 4, p and 7, equa-
tion (17) guarantees that for x>

R(x)<H (x,x) <H(xx) = 1.

Therefore, in the ESS every newborn disperses whenever
x>X. As a consequence (x)= 0 for all x>X.

Now consider what happens at values of x<x. Using
the fact that x never grows beyond ¥ we can conclude
that, at the ESS, for x<x

R(x)>H(%x) =1,
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